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DIVISION IN ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

Walter Rudin

I. Introduction

1.1 If M0 , MI, Me,.. are positive numbers, we denote by C{Mn} the class

of all complex functions f on the real line for which there exist constants

S= 
Pf and B = Bf such that

(1) 11) _f1 3BrM n (n = 1,,12,...)

where D = d/dx and ii I is the supremum norm: 1f 11 = sup If(x) I, - < x < -o

The class of all members of C{M } which are periodic, with period 2W ,
n

will be denoted by C p{Mnd }.

The sequence {Mn} is said to be logarithmically convex if {log Mn} is

convex, i.e. if M < M M for n = ,2 , 3....y If {FA } is the largestcovx .e. 1f n - Mn-i n+ln

logarithmically convex minorant of {Mn}, then C{Mn} = C{Mn} and

C p{M } C p{M }. This follows from the inequalities

r-n n-p

(2) 1iD1fI < z j]DPf 11 Drf 11r-p (0 < p.< n < r)

which are due to Kolmogoroff [6; pp. 211, 216].

Hence we may assume, without loss of generality, that {M n} is logarithmically

convex; unless the contrary is stated, this assumption will be made from now on.

Since C{Mn} = C{ X Mn}, for every positive constant X, we may also assume
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that M0 = 1. It will be convenient to define A0 = 1 and

n) 1/n

(3) A n (n = 1, 2, 3,...)

1. 2. Leibnitz' formula

n
(4) Dn(f. g)= Z (n)D'f. Dn-jg

j=0 O

shows that each C{M n} is an algebra, under pointwise addition and multiplication:

the above assumptions on {M n} show that MM < M if 0 <j <n, andn n-Impfy

therefore the inequalities II DnfII _< 15 Bn M and II Dng B1 n_ M imply1 n -22 n

IDPn(f g) 11< : nk') , B pM P BZ nM
j= 1 1 j 22 n-j

( 5 ) n -
)< PI ZMnZ (n )BI B nJ (BI+ B )nM

j=0

1. 3. The algebra C{M n} is called quasianalytic if the zero-function is the only

member of C{Mn} such that Dnf(x 0 ) = 0 for n = 0, 1,2,... , at some point x 0.

Otherwise , C{M n} is non-quasianalytic. The theorem of Denjoy and Carleman

([i], [6]) states that C{Mn} is quasianalytic if and only if

0 M
(6) Z = 000 Mn+l

Since {log Mn I is convex and M0 = 1, we see that (M n/Mn+l)n < Mn-1

so that the condition (6) implies

00 -/n(7) -M = .0
M1
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To prove the converse we appeal to the inequality [7]

(a1a2... a n)1/n _< e Zan

valid for aI > 0, and take a, = M iI/Mi

Thus (7) is also a necessary and sufficient condition for quasianalyticity.

1.4. If i/f e C{M n} whenever f E C{Mn} and inf If(x)I >0, we call C{Mn}
x

inverse-closed; a similar definition applies to C p{M n}.

The problem with which we are concerned, and which is solved in the present

paper, is the description of all inverse-closed non-quasianalytic algebras

C{Mn}. It turns out that they are precisely those for which there is a constant K

such that the inequalities

(8) A < KA

hold whenever s < n ; here {An} is defined by (3).

The condition (8) is satisfied with K = 1 precisely when {A n} is an increasing

sequence. Accordingly, we shall call {An} almost increasing if (8) is satisfied

for some K< oo.

1. 5. Actually, a more striking dichotomy exist than was indicated in the preceding

paragraph. Our main results may be summarized as follows:

THEOREM A. Suppose {An} is almost increasin . Then C{Mn} is inverse-closed.

Furthermore, if f E C{M} and if c_ is an analytic function in an open set which

contains the closure of the range of f, then O f E C{M .
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THEOREM B. Suppose C{M n} is non-Quasianalytic and {A n is not almost

increasing. Then there exists an f E C p{M n} and an entire function * such that

(i) if K is any complex number, then (X - f)-i is not in C{M d

(ii) ý a f is not in C{Mn}.

The symbol p a f indicates the function defined by: (p * f)(x) = ý(f(x)).

Since f is bounded, (i) shows that C{M n} is not inverse-closed, by taking

X I > If 11. Actually, (i) shows more: for some f E C p{Mn I the spectrum of f

(relative to the algebra C {M n) consists of the whole plane, although the range
p n

of f is compact. We state the result for C p{M n} rather than for C{Mn} to

emphasize that the phenomenon (i) is not caused by the behavior of f near infinity,

but that it is present in non-quasianalytic algebras on the circle.

It would be interesting to extend Theorem B to quasianalytic classes.

1.6. The problem treated here has the following background. Let A be the class

of all functions on the circle whichare sums of absolutely convergent trigonometric

series. Katznelson ([4], [2]) proved that if ý is defined on the real line and if

0 0 f E A for all real f e A, then * must be analytic onthe line. Malliavin (5]

has proved that corresponding to every inverse-closed non-quasianalytic class

C{Mn} there is a real f E A such that * - f E A only if ý E C{Mn}. It is known

that the intersection of all non-quasianalytic classes is precisely the class

C{n! }, which consists of analytic functions ( a proof is included in Part IV).

If it were true that the intersection of all inverse-closed non-quasianalytic classes

is also C{n!} , then Malliavin's result would imply Katznelson's. But it is not so:
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THEOREM C. The intersection of all inverse-closed non-guasianalytic classes

is precisely the class C{(n log n) n}.
*n *1/n}

Since C{Mn} is a subclass of C{Mn } if and only if {(Mnv/M) ) is

bounded above [1;p. 19] and since Stirling's formula implies that
1

n* log n (n!) n _c

we see that C{n! I is a proper subclass of C{(n log n) n}.

In particular, it follows that there exist non-quasianalytic algebras which are

not inverse-closed, a fact which seems to have escaped previous notice.

II. PROOF OF THEOREM A.

2. 1. THEOREM. Suipose A Z< KA whenever s < n, for some fixed K. Ifs- n

a, P, B are positive constants, if

(1) IIDnf 1 B"M (n = 09 ,1 2,...

and if If(x)I>a- (-o <x <co), then

(2) II Dn(1/f) B < PiBIMn (n = 0,1, 2,...)

where /1 = 2/a, B1 = BK(l + ZP/a-).

This is due to Malliavin [5]. We include the proof since the quantitative version

stated here is needed for Theorem 2. 3.

Proof. Choose E so that Z•E = (1 - E)a-, then choose {rn} so that BKAnrn =

(n = 0,11,Z,...). Fix n, fix x 0, and define

D f(x0 n
Q(z)=f(x0 ) +Df(x 0)z +... + n! z
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For 1 < s < n we have

IDSf(x 0)I/s! < PBSAs < P(BKA)s

and hence Iz I < r implies
- n n 00

IQ(z) > - P Z(BK r)s> P- s

s=l 1
(3)

- 0*
I - 2

The first n derivatives of Q at z = 0 are equal to the first n derivatives of f

at x = x 0 . Hence Dn(l/f)(x 0 ) = Dn(I/Q)(0), and Cauchy's formula gives

(4) Dn(1/f)(x 0) n! dz
z0 Tri I I=r zn+ Q(z)

n

"We conclude from (3) and (4) that

IDn (/f) (x )I <_ 2_. n! = 2 (_K_) n Mo To n a' Mn
r n

which completes the proof.

2. 2. LEMMA. Suppose {f p} is a sequence of functions on the real line which

converges pointwise to a function f, and which satisfies the inequalities

(5) 1IDnfp <5Rn < o (n = 0,1 Z,...; p = ,2, 3,...)

Then we also have 11 Dnf <R for all n > 0.

Proof. Suppose that dEf exists and that D fp -* Df pointwise (for j = 0, this is

part of the hypothesis). Fix x and e > 0, restrict y so t1mt 0 < Iy- xl < E/Rj+z.

Then-
Tef (y) - D Jf (x) J+l

(6) p - 2y-x p 2 p
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for some t between x and y. Write (6) once more, with q in place of p,

and subtract the two equations. The right side is less than E ; letting p, q -• 0,

the quotients on the left converge to the same limit, namely {IDf(y) - d f(x)}/(y-x).

Hence {DJ+lfp (x)} is a Cauchy sequence. Let L be its limit. Then (6) gives

(7) I f(y) - d f(x) - L
y-x

as soon as 0 < ly- xl < e/RJ+z. Thus Dj+lf exists and Ed+lf .- J+1f

pointwi se.

The proof is completed by induction.

2. 3. THEOREM. Suppose f : C{Mn}, {An} is almost increasing, and iLs

analytic in an open set which contains the closure of the range of f. Then

4o f E C{Mn}.

Proof. There exists F, a union of finitely many rectifiable curves in the domain

of *, and there exists -> 0, such that

(8) Iz - f(x) I >-

for all z e F and all real x, and such that

(9)~ (f (x)= 1 )(z) d z (- o < x < oo)
(9)1r r(~) ~ z - f(x)"

There is a sequence of partitions of F, by points z (p),Zl(p) ... ,zN , such

p
that the functions gp defined bYl O(Z )

(10) g (x) = 1-E i ( (x ) -Z (p)

converge= 1 ( sj-

converge to 0 (f (x)), as p --o oo.
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Choosing P and B so that 11Dnfi1 <P:BnM and hf - 5SP forall

z E r, Theorem 2.1 shows that

(11) IIDn( 1 P B )[ iB n (n> 0)

Since 0 is bounded on r and since ý,z W - z (p) I does not exceed the length

of F, we see from (10) and (11) that

(1Z) 11 gpl _<1S BnM (n>0)
p - I n -

Lemma 2. 2 now implies that

(13) 1I DS(, f) 11 <PSZBnMn (n > 0)

and this completes the proof.

III. PROOF OF THEOREM B.

3.1. LEMMA. Suppose {a(n)} is a sequence of positive numbers such that

{na(n)} is increasing but {a(n)} is not almost increasing. Then there exist

sequences of integers, {si} and {mi}, both tending to co, such that

a(s)J
a(m is i) -0 0

Proof. Put

(2) y(s) = sup{a(s) a(s) a(s) ...

"Ua(s+l), a(s+Z), a(s+ 3),

Since {a(n)} is not almost increasing, we have sup y(s) = oo.
s

Since {a(n)} increases, we have
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3(s) < (m>l)
(3 (ms) - -

Also, if s <n, then n- =ms +t with 0 < t<s, and so a(ms) !< na(n)/ms <Zca(n).

Thus a(s)/a(ms) > a(s)/Za(n), which gives

(4) sup a(ms) - I2 Y(s)
m>l

Since sup -y(s) = o, (4) shows that (1) holds for some sequences {s

{mi }; by (3) this is only possible if mi -- oo.

If y(s) = x, for all s, we can take for {si} any sequence tending to oo,

and then find {mi } so that (1) holds. If y(s 0) < co for some s0, then

inf a(n) > 0, and (1) implies that c(si) - oo, i.e., that s- - 0o.

3. Z LEMMA. Suppose C{M n} is non-guasianalytic and I is a closed interval

in the interior of a closed interval J on the real line. Then there exists a constant

P anda function h such that h(x) =1 on I, h(x) = 0 offJ, 0 <h < 1, and

(5) UDnh PM n (M n =O )Z

Proof. Put an= Mn_/Mn. Then {an} decreases monotonically, and

San s eoo. There exists a monotonically decreasing sequence {b n} such that

a/ -/ 0 and Eb<oo. Put M =(b b...bF . Then

Mn*_/Mn = bn < co and {M* } is logarithmically convex. Hence C{M }

is non-quasianalytic. Also,

.( 1/n (i/
IM I a 1/na

(6) n n -0 (n - o)

SMn bou a yb 0 (nc gc n s

Since C{M } is non-quasianalytic, there is a function g c C{M }such
n n
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that g(x) = 0 if x < 0, g(x) -- I if x > x 0 for some x0 > 0. Bang [1; p. 55]

(see also Mandelbrojt [6; p. 103]) has indicated a very simple construction

which achieves this. Affine changes of variables(which do not affect the class

C{M* n}then give functions hl, h2 E C{M } such that hI = 0 to the left of

J, hI= on I and to the right of I, h2 = 0 to the right of J, h 2 1 on I

and to the left of I. Put h = hIh . Then h has the required properties, except

that (5) is replaced by

(7) IDnh 1 (n = 0, 1,2...)
n

for some constant B. Setting P = max Bn M/Mn, (6) shows that P < o, andn n

(7) shows that (5) holds.

3. 3. We now turn to the proof of Theorem B. Put

(8) lin = Mn/Mn+l (n = 0, 4 Z,..

By the Denjoy-Carleman Theorem, Z pn < oo. Replacing Mn by knMn if

necessary, we may assume, without loss of generality, that

(9) s < •
0

We define
5

(10) f s(x) W sMs exp{ix/Rs} (s =0,1,2,...) ,

and note that

(11) Dn(fm) (m/1n )nfm (s n > 0 m > I)

5 ss f I

The convexity of {log Mn shows that Ms+l-n < MnMs+1 if 0 <n < s
n-s n-S-l s

if s +1 < n, we have similarly Ms < M s M Thus the inequality
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s+l-n s-n
(1)M 5  <M Ms -MnM s+l

holds in all cases.

Applying (12) to (ii), with m = 1, we see that

(13) IIDnf II = ,s-nM < M (s n>0)

In particular, taking n = 0,

(14) 11ffm s = lfs 11 _5M0 = 1 (S>O, m>1)

By (9), we can place disjoint closed intervals Jk in (O,2Tr) which contain

intervals Ik in their interiors, with m(I k) = 27k, and Lemma 3.2 shows that

there are functions hk and constants 3k.> k such that hk = 1 on Ik' hk = 0 off Jk,

and

(15) II Dnhk II _< PkMn (uM k > 0)

Put a(O)= 1 and define a(n) by
Vn

(16) n a (n) = M (n > 1)

By hypothesis, {An} is not almost increasing. By Stirling's formula, {a(n)/A n

is bounded above and below by positive numbers. Hence (a(n)} is not almost

increasing. Our standing assumptions on {M n} (logarithmic convexity, and

M0 = 1) imply that {n a(n)} increases. Thus Lemma 3.1 applies, and theresk
are sequences {sk}, {mik}, tending to o, such that sk > k, 2 > Ak f and

(17) a~ 0(k -. w)
a(mksk)
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We extend the functions hk * fsk , defined in (0, 2Tr), to be periodic,

with period 2Tr, and define

k00(18) f x) = Z P. h k(x f (x)
k=O k k

By (13), (15), and Leibnitz' formula, we have 1IDn(h fk)II < ZnMn . The

functions hk have disjoint supports. Hence if g is any partial sum of the series

(18), we have IIDng 11 < 2nMnP, and we conclude from Lemma 2. Z that

IIDnf I1 < ZnM Thus f r C {M n}.

Since 0 is in the range of f, it is clear that f-I is not in C{Mn 1. Fix

X # 0, put F = (I - f/x)-I, and assume (this will lead to a contradiction) that

F e C{M n}. For some B < o we then have

nn

(19) II DnF 11 _< BnMn (n > 1)

For large enough k, I1Kfk > 1. Since h = 1 on Ik and hj = 0 on

Ik if ji k, we have

00

(20) F(x) Z (XP)-ms (x) (x C I k k> k0)
m=0 k

By (11) and (14), the series (Z0) may be differentiated term by term any number

of times, since the resulting series converge uniformly on Ik . Since sk > k,

we havesk , so that there is a point xk e Ik at which exp {ix/•is} > 0.
k k

Differentiating (20) n times at xk therefore gives

00

(21) DnF(Xk) x n inm (m/L s )nIf s(xk)AIkI m 
,

M=0 k k
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by (11). By (19), no term in the series (21) exceeds BnMn. Taking m = mk

and n = mkSk, (10) shows therefore that
Sk M k m

mk M ms

(22) k< kB mSkM (k 0th k mksk (k>k)

Taking n roots in (22) and using (16), we obtain

(23) Q(mks) <BIXP3 k < ZBIXI ka(m k Sk ) k

The last term in (Z3) is bounded, as k - 0, and this contradicts (17).
-I

Thus (I - f/k) is not in C {M} , and part (1) of Theorem B is proved.

Part (ii) is proved quite similarly. Suppose
00

(24) @(z) = c zm <I l/m
( m ,0 <cm ' -m 0

and put g(x) = 0(f(x)). On Ik we have, in place of (20),
Sco

mZ m mSkX
(20') g(x) = mz f m

m=0 Ak k

and we can choose xk E Ik so that fs (x k) > 0. In place of (23) we obtain

/iMkSk a(sk)
(Z3') cm < 2B

Mk cmksk
1/in 1/ms

Since c _< c , this gives
m m

1/ink a (mks k)

(25) c < ZBm k - (3(S k)

But {c m} can tend to 0 without satisfying (Z5), since the right side of (25)
in

tends to 0 as k - oo , by (16).

This completes the proof.
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IV. PROOF OF THEOREM C.

4.1. Let us now assume that C{M n} is non-quasianalytic and inverse-closed.

By Theorem B, {A n} is then almost increasing, and so is {an}, if

a = M1/n/n. Choose K so that a <Ka if s <n.n n s-- n

Since z M-I/n < 00 (see § 1. 3), , (nan)- < 0o. Butn n

_ -- -- I- log n

n 1<s<n

The sum on the left tends to 0 as n oo . hence an/log n -o J , and this means

that C{Mn} contains C{(n log n)n} and therefore proves one half of Theorem C.

4.2. To prove the other half, we consider a function f $C{n log n)n}, and we

shall construct'a n6nh'-quai-ianalytic class C{Mn}l with {an} increasing, such

that f ý C{Mn}.

Since f ý C{(n log n)n}, either some derivative of f fails to be bounded,

in which case f belongs to no C{Mn}, or there is a sequence {ni} such that
ni

(1) Di enf II > (i3ni log ni)

we can make {n i} increase so rapidly that

(2) ni+1 > ni log (12 log n i)

Define

(3) *(n) = ni log (i2ni log ni)

and

(4) 0(n) =a i+bin+ nlog n (i <n <n n

where ai and bi are so chosen that the definitions of 0(n) agree when
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ni, ni+1 * Thus

(5) a i + bin, =ni log (i log ni

ai+ bini+1 = n i+ log ((i+ 1) 2 log ni

From this we deduce that ai < 0, and, via (2), that

(6) bi > log (i log n i+) - 1 .

Now put Mn = exp {I(n)}. If ni <n <ni+1, then

(7) exp{-b} < e/i log n i+1

and hence, by (6),

M n
n = exp{ý(n) - 4(n +)} exp{- bi}. n

n+l (n+l)n+l

(8)
e )1-n-Ii 1 1<2n n 2

i log ni+1 n i log n i+l

It follows that

(9) Z M s-1 < 1i --I<
M ,2 n .2

n+nil n n. I

so that C{Mn} is non-quasianalytic.

Next,

a.

(10) log n = b . (n+ <n<njn)
n n n 1 n

and since a. < 0, {a n} increases. We can also arrange our construction so that

b i+ > bi Y and then ý will be convex. (This is not really necessary, since
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the convergence of Z Mn/Mn+1 assures the non-quasianalyticity of C{Mn}

even without logarithmic convexity of {Mn}.)

By (1) and (3), f ý C{Mn}, and the proof of Theorem C is thus complete.

4. 3. THEOREM. The intersection of all non-ciuasianalytic classes C{M n} is

the class C{n! }. (Our reason for including a proof of this result is stated in

§ 1.6.)

Proof. If A <A for some sequence {ni} tending to 0o and some constant
1

A, if f E C{Mn}, and if Dnf(0) = 0 for n= 0,1,21,..., then foreach x *0

there exists = (x, ni) such that

n, n. n n
If(x)! ID If(ý)x 1/i B M nx /n 'i

n. n.

= I IB xI < I"I jBAx
1

where P, B depend on f. If I BAxI < 1, it follows that f(x) = 0. Hence

C{Mn} is quasianalytic.

Thus C{n! } is contained in every non-quasianalytic C{Mn}.

To prove the converse, suppose f ý C{n! 1. Then there is a sequence

{n I such that
n n

JID i~f11 > (1i3n i) ni

and

n i+1 >ni log (i2 ni)

Put $(ni) =n ilog (i2ni), *(n) =ai+ bin for ni <n<n i+11 where

ai + bini = ni log (i2ni)

ai + bi ni+1 = ni+1 log ((i + 1) ni +) ,
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and define M = exp{O(n)}. As in § 4.2, we now have bi > log (1 ni) - 1

hence

M -biM e e(nn

M e < -- (ni n < ni+) 1n+1 i ni+1

and

n M /M <i-2

nE+ n-i nn.+l
1

Thus C{Mn} is non-quasianalytic, and since our definition of 0 shows

that f ý C{Mn}, the proof is complete.

V. MISCELLANEOUS RESULTS

5. 1. THEOREM. Every non-guasianalytic algebra C{Mn} is contained in an

inverse-closed algebra C{M* I which is minimal in the following sense: if
C{M'n contains C{M } and if C{M' } is inverse-closed, then C{M'nI

n n n n

contains C{M*}.

Proof. Put A =maxA and M =n!A . Since M <M we haven s<n s n n n- n

C{Mn}c C{Mn}. Since {A*} increases, C{M*} is inverse-closed.

(Note that the proof of Theorem A made no use of logarithmic convexity.)

Now suppose C{Mn}C C{M'n} and C{M'n} is inverse-closed. Since

C{M'n} is non-quasianalytic, Theorem B shows that {A'n} is almost increasing,

where A I = {M' /n! I l/n. Hence there are constants X, K, such that

M <Xn-M' and A' <KA' if s_<n. This implies A <XKA' .hencen - n s - n s- n

A < XKA' ,hence M* (XK)nM andthus C(M ICC{M'n}n- n n-- n' n
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5. 2. THEOREM. There exist non-guasianalytic algebras C{M n} which

contain no inverse-closed non-quasianalytic C{M' n}.

Proof. Theorem 4. 3 shows that there is a non-quasianalytic C{Mn} such that

Mn

n i log n. - 0

for some sequence {ni}. if C{M'nc C{Min}, it follows that C{M'n} does

not contain C{(n log n)n }, and hence Theorem C shows that C{M'n} cannot

be both inverse-closed and non-quasianalytic.

5. 3. COMPLEX HOMOMORPHISMS OF Cp{Mn}°

Since we are investigating certain function algebras, it is appropriate to

study their maximal ideals and the complex homomorphisms which exist on them.

We restrict ourselves to the algebras C p{Mn}, for simplicity, for then we are

dealing with functions on the circle T, i.e., on a compact space.

If C p{M n} is inverse-closed, there are no problems. For each x E T,

let Ix be the set of all f Cp {M n} which vanish at x. Then I is clearly

a maximal ideal in C p{M } Conversely, assume I is a maximal ideal different

from every Ix° For each x, there is a function fx E I such that f x(x) * 0, and

the compactness of T shows that there are points xv, .. ,xn such that
n

g = Y f fx > 0. But g E I, and since C p{M n} is inverse-closed (by
1 ii

assumption), we have 1 E I, hence I = C p{Mn 1. We summarize:

if C p{M N} is inverse-closed, then every maximal ideal I in C {M }

is of the form I = x and every complex homomorphism qP of C {MN} is of

the form 4(f) = f(x), for some x e T.
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(By a complex homomorphism of C p{M n} we mean a multiplicative

linear functional which maps C p{M n} onto the complex field. We make no

continuity assumptions. Indeed, we have not introduced a topology in Cp{Mn}.)

If C p{Mn I is not inverse-closed, then, on the other hand, there do also

exist other maximal ideals. For if f E C {Mn}, if f has no zero on T, and

if 1/f C p{Mn }, then f generates a proper ideal in C p{M n} which, by

Zorn's lemma, is contained in a maximal ideal I; since f EI, I is different

from I for all x E T.x

It is nevertheless conceivable that all complex homomorphisms are of the

form Lp(f) = f(x) for some x E T, so that the quotient algebras C p{M n}/I are

different from the complex field, whenever I is not one of the ideals I .

We shall now prove that this conjecture is true, under the additional

assumption that C p{M n} is non-quasianalytic and that log Mn = O(n ). We

divide the proof into several steps. Our growth condition will only be used at

the end.

We consider a fixed C p{M n, and a fixed complex homomorphism 4 of

C p{M n}.

(i) There is a point x0 E T such that 0(f)=0 for all f E C p{M } which vanish

near x0 , (i. e., in a neighborhood of x0 ).

For if there is no such point, the compactness of T shows that there are

segments Vl'... IV and functions fl,...I f such that f. =0 on V but

ý(f = 1. Putting f = f f m' we have f = 0, ly(f) = 4(fl) .. 4(fm) 1,

and hence 4(0) = 1, a contradiction.

For simplicity, we assume from now on that x 0 = 0.
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(ii) Suppose f e C p{M n} and f(x) = x near 0. Then 0.(f) =0

Proof. Put i(f) = a. If a * 0, then there exists g Cp {M } such that

g(x) = (x - a)-I near 0; this is so since (x - a')-l is analytic near 0, and

we can multiply by one of functions h constructed in Lemma 3. 2.

Then (f - a).g = 1 near 0, and (i) shows that p(f - a)ti(g) = 1. But

ý(f - a) = 4(f) - a = 0, a contradiction.

(iii) If_ f E C{Mn} , f(O) = 0, 2nd g(x) = f(x)/x, then g E C{M n+}.

Proof. Repeated differentiation of the equation f(x) = xg(x) yields

D n+f(x) = xD n+g(x) + (n + l)Dng(x) (n_> 0)

As Ix1 -0 1 , Dng(x) -• 0, and Dn+ g(x) = 0 at every local maximum of

IDng1. Hence jDnglj_< llDn+ifli

(iv) If f E C {M } and f(0) = 0, then (f) = 0.

Proof. There are functions g, h e C {M n} such that g = I near 0, the

support of g lies in [-Tr + 6, T- 6] for some 6 > 0, and h(x) =x on

the support of g.

Put F = fg/h. Since h =x where fg # 0, F = fg/x. Since fg Cp {M n},

(iii) shows that F E Cp{Mn+l But if log Mn = 0(n 2 ), then C{M n+} =C{Mn}

[1; p. 22]. Thus F E C {M n}.

By (i), ilJ(g) = 1; by (ii), ý(h) = 0. Hence 4i(f) - p(f)4(g) = p(fg) = 4(Fh)

= q(F)t(h) = 0 .

We now summarize the result:

THEOREM. If Cp{Mn} is non-guasianalytic, if log M n = 0(nZ), andif L is
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a complex homomorphism of C p{M n}, then (f) = f(x) for some x E T.

We conclude with the remark that there exist non-quasianalytic algebras

C{Mn} which are not inverse-closed and which fail to satisfy the condition

log Mn = 0(n2). (In fact, if wn - oo and if Xn/nI -• oo, the technique used

in the proof of Theorem 4. 3 allows us to construct non-quasianalytic C{Mn}

such that M n> w n for infinitely many n, and also Mn < X for infinitely

many n.) For these algebras we do not yet know all complex homomorphisms.
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